The wave equation

1. Suppose the wave speed is $c=2.0 \mathrm{~m} / \mathrm{s}$ and a string is initially at rest. Suppose the string is 5 m long.
a. What is an appropriate value of Δt ?
Answer: $\Delta t=0.25$
b. Suppose both boundaries are initially at rest, but then at $t=0.25 \mathrm{~s}$, the one boundary is brought up to one, and immediately brought back to 0 before $t=0.5$. Fill in the initial and boundary conditions for up to 2 seconds.

Answer:

0	1	0	0	0	0	0	0	0
0								
0								
0								
0								
0	0	0	0	0	0	0	0	0

c. Find the propagation for up to one second.
Answer:

0	1	0	0	0
0	0	0.25	0.375	0.3281
0	0	0	0.0625	0.1875
0	0	0	0	0.015625
0	0	0	0	0
0	0	0	0	0

d. The following shows the propagation for three seconds:

0	$\mathbf{1}$	0	0	0	0	0	0	0	0	0	0	0
0	0	$\mathbf{0 . 2 5}$	$\mathbf{0 . 3 7 5}$	$\mathbf{0 . 3 2 8 1}$	0.1641	-0.0059	-0.0908	-0.0734	-0.0049	0.0457	0.0436	0.0047
0	0	0	0.0625	0.1875	$\mathbf{0 . 3 0 4 7}$	$\mathbf{0 . 3 2 8 1}$	0.2278	0.0579	-0.0818	-0.1192	-0.0599	0.0253
0	0	0	0	0.0156	0.0703	0.167	$\mathbf{0 . 2 6 8 1}$	$\mathbf{0 . 3 1 0 3}$	$\mathbf{0 . 2 5 0 1}$	0.103	-0.0603	-0.1627
0	0	0	0	0	0.0039	0.0234	0.073	0.1531	0.2342	$\mathbf{0 . 2 6 0 7}$	$\mathbf{0 . 1 8 2 7}$	-0.0018
0	0	0	0	0	0	0	0	0	0	0	0	0

Does this make sense?
Answer: While this is a course approximation, highlighted in the table above is the peak, and as you may note, the peak appears to be travelling at approximately 2 meters per second (one cell per two time steps).
2. What is c for the electromagnetic force, assuming a vacuum?

Answer: 299792458 m/s

